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Atomic charges calculated by various methods for model two-center molecules 
have been compared with corresponding electron-count functions. Varying 
the overlap and polarity conditions in the model system, it could be found out 
under what conditions the individual definitions fail to predict physically 
reasonable values of atomic charges. 
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1. Introduction 

The theoretical electron density distribution derived from molecular wave func- 
tions is an important means for studying various facets of the character of the 
chemical bond. Besides density contour maps it has proven to be very useful to 
represent the density distributions in a condensed form as certain numerical 
quantities, called atomic charges in a molecule. In this way it was possible to assign 
quantitative meaning to such concepts as reactive sites and charge redistribution 
within a species composed of electrons and atomic nuclei. Because of the some- 
what obscure meaning of the charge assigned to an atom in a molecule, sundry 
definitions of this quantity have emerged, differing in their quantitative and even 
qualitative reliability. 

This contribution examines some of the aspects of defining the charge on an atom 
in a molecule. Since general aspects are most transparent in simple cases, we 
investigate a single-electron two-center model system which allows to compare the 
calculated atomic charges with electron-count functions. In this way we are able 
to accomplish a quantitatively meaningful analysis of different approaches to the 
given problem. Such an analysis seems to be more appropriate than to investigate 
complex molecules, since in the latter case the interpretation of numerical results 
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is less lucid. Namely, in applications to molecules a breakdown of the given 
approach rather than the order of appropriateness of all possible approaches can 
be observed because of lack of proper comparison with the true solution. 

2. Model 

We consider a system consisting of two nuclei a and b located on the z-axis, and 
one electron. The nuclear charge Z b on nucleus b be equal to the proton charge 
and the nuclear charge Z a on center a and the internuclear distance R be variable 
quantities. To this end, we shall analyze the wave functions that are variationally 
calculated for this system with the usual one-electron Hamiltonian and functions 
of the LCAO form 

~a = eaA + cbB=x~qq EA +pB] (1) 

where A and B are Slater-type atomic orbitals associated with centers a and b, 
respectively, i.e., 

I=  x ~  exp ( -  Z I r I), for I=  A, B (2) 

S is the corresponding overlap integral and q= 1/(1 +p2 +2pS). Thus, we have a 
sufficiently flexible model allowing to treat the influence of bond polarity and 
overlap effects upon the atomic charge values. 

3. Atomic Charge Definitions Explored 

All definitions will be given with reference to wave function (1). Because the 
measures of electronic charge corresponding to both centers complement each 
other to give a charge of one electron (with one exception, as will be seen), only the 
expression Qa for electronic charge associated with center a will be given. The 
electronic charge will be given in multiples of e throughout the paper (e denoting 
the elementary charge of the electron). Accordingly, the charge of the atom in a 
molecule (in atomic units) is then given as qa = Za-Qa.  

3.1. The MuIliken and MulIiken-Type Approaches 

Mulliken Eli proposed that Qa be defined as (definition M) 

Qa = c2 + ca cb S=  q(1 +pS) =- QUa (3) 

Several modifications of the Mulliken scheme exist; they are attempts to improve 
the charge definition by a different partitioning of the overlap charge between both 
centers. 

One idea, originally suggested by LOwdin [2] for approximate evaluation of many- 
center integrals, is to partition the overlap charge in such a way as to preserve the 
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dipole moment of the orbital [3, 4]. This condition yields (definition L) 

-RS]J (4) 

where ~ = ~zAB dr and the coordinate z is measured from the midpoint between 
both centers. 

Another possibility is to divide the overlap charge according to the ratio of the 
pertinent atomic orbital coefficients in each molecular orbital [5-7]. The scheme 
proposed by Christoffersen and Baker [7] leads to the expression (definition C) 

c 2 l 
2 a Q,=c, + ~ ,  ~2 (2c, cbS)= (5) 

C a 9 -  C b 1 + p 2  

3.2. OrthogonaIization Approach 

The simplest way to circumvent the problem of partitioning the overlap charge is 
to work with a basis of orthogonalized atomic orbitals. Among all possibilities, 
the L6wdin symmetrical orthogonalization [8] is the most suitable, because it 
preserves the maximum similarity to the original basis set. This procedure 
furnishes (definition OB) 

Qa = Q~q q(1 _pZ) [(1 + S)1/2(1 - - S )  1/2 --  1] (6) 
2 

3.3. Projection-Density Approach 

Roby's formulation [9] relies on Gleason's theorem [10] according to which the 
probability of occupancy of the molecular subspace (9 represented by the projector 
P~ is Tr PPe, where p is the appropriate first-order density operator. We thence 
obtain for the subspace defined by orbital A (definition P) 

Qa = Q~ + qpS(pS + 1), (7a) 

Qb = (1 -- QM) + qS(S +p), (7b) 

where even the expression for center b is given, because the sum of both electron 
populations does not equal 1 (i.e. the total electronic charge in the molecule). It is 
possible to arrive at the expressions (7a) and (7b) on grounds of different argu- 
mentations [11, 12]. 

As extensively discussed in former papers [9, 13], the values obtained by the 
projection-density approach have not that simple interpretation as those obtained 
by other methods, because the "shared" electron density is-instead of being 
partitioned- equally assigned to all atoms which participate in the sharing. How- 
ever, in our simple two-center system we can assume that the "shared" density 
contributes to both centers in an equal way, so that we obtain for the "corrected" 
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atomic charge density (definition PC) 
, 1 Qo=y(Qa-Qb+ I) 

where Qa and Qb are given by Eqs. (7a) and (7b), respectively. 

(8) 

3.4. Geometric Space Partitioning Approach 

Dividing the three-dimensional space of the molecule into regions associated with 
the individual atoms and integrating the pertinent electron density function over 
each region, we obtain the physically most meaningful measure of electronic 
charge on atoms in a molecule [14-18]. However, the problem arises as to how to 
determine the borderline between the regions which can hardly be done without a 
portion of arbitrariness. 

For our system we can express the electron density distribution function p as 
depending on one variable z; this function p(z) we call "electron count" [14]. Thus, 
the task of determining the regions belonging to subsystems a and b reduces to 
finding a plane z= z 0 separating them. For calculating Zo we used the modified 
criterion of Politzer and Harris [14], according to which the "electron-count" 
function po(z) for the system consisting of hypothetically non-interacting sub- 
systems satisfies the condition po(Zo) = �89 We speak here about a modified criterion, 
because we had to attribute charges to non-interacting subsystems in a system 
which carries a charge. Of course, our somewhat formalistic definition of the value 
of po(Zo) is arbitrary, nevertheless ex post justified by the form of the electron- 
count functions, as will be seen later. 

4. Results and Discussion 

All definitions of atomic charges depend on some model assumptions or pre- 
conceptions. If we want to compare the merits of one definition with those of 
another, we must try to extract in some way information about the degree of 
adequacy of the charge definition with respect to the electron density function 
which represents the physical quantity of closest relevance to the problem. An 
examination of the electron-count functions for the model corresponding to 
various values of Z a and R, and the confrontation of the functions with the effective 
atomic charges calculated according to the main definitions given above provide a 
way to visualize the degree of physical reliability of the individual definitions. The 
graphical representation of various atomic charge definitions in terms of the 
electron-count function is to be understood in such a way that the amount of 
electronic charge to the left of the plane perpendicular to the bond axis and passing 
through the pertinent point is interpreted as the charge assigned to center a. Figs. 1 
and 2 represent a selection of these results for two values of Z~ (1.2, 3.0) and 
R (1.0, 2.5). 

Because of the limited quantitative meaning of the atomic charge in a molecule, 
there seem to be reasonable only approaches working in a proper comparative 
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Fig. 1. Electron-count functions for 
ground (full curves) and virtual states 
(dashed curves) corresponding to 
R =  1 a.u. Electronic charge values 
depicted on the curves are calculated 
according to definitions: M 0, OB �9 
PC x and the approach D + 
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manner. From the point of view of chemical bonding the most interesting electron- 
transfer phenomenon occurs in the course of forming a molecule from atoms which 
genuinely justifies the free atom concept in this context. In regard to these argu- 
ments, one would expect the atomic charges to lie on the electron-count functions 
at the same value of z for both the ground and virtual states. However, it is seen 
from Figs. 1 and 2 that for some charge definitions the deviation from this property 
is considerable, the most pronounced one being for the Mulliken population 
analysis approach. Moreover, the position of the charge on the electron-count 
functions comes out in some cases far out of the line segments defined by the 
location of centers a and b. 

It appears that among the definitions explored the geometric space partitioning 
approach leads to physically most meaningful values: first, this approach is 
directly related to the electron density function and does not depend on the special 
form of the wave function. Further, concerning its particular application, besides 
the correct relationship between the ground and virtual state charge values with 
respect to their position on the electron-count functions (this holds by definition), 
it is to be noted that the charges corresponding to virtual states are placed at the 
plausibly expected point, i.e. where dp(z)/dz reaches minimum on the rising part 
of the curve. This means that we arrived at a model which satisfies automatically 
the borderline criterion suggested by Schuster et al. [18] in cases where the shape 
of the electron-count function allows the application of the criterion. 
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Fig. 2. Electron-count functions for 
ground and virtual states correspond- 0 

ing to R=2.5 a.u. A l l  other symbols 

have the same meaning as in Fig. 1 -4 
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These properties as well as the large amount of chemical and physical evidence 
which has been gathered in support of the validity of the approach [14, 1951] 
make it reasonable to define the values obtained by means of space partitioning as 
a standard (Fig. 3) and express all other results relative to that, i.e. AQ,= Q, -  QS 
(Figs. 4 and 5). The index S stands for "standard". 

However, we neither claim superiority for this approach, nor attach any unique 
value to its results. We only believe in its soundest physical foundation. Therefore, 
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Fig. 3. Electronic charge on center a calculated 
according to approach D as a function of Z a. Cases 
corresponding to ground and virtual states are dis- 
tinguished by full and dashed curves 

the results are presented in such a way, that either absolute values of the corre- 
sponding quantities, or relative quantities of any kind of standard can be com- 
puted by elementary arithmetic. In addition it should be also mentioned that in 
spite of all appealing features of the geometric space partitioning approach in 
application to linear molecules - it cannot be considered as a uniform and generally 
applicable procedure for calculating atomic charges. The reason lies in the difficulty 
of defining "atomic regions" within the molecule in such a way as to preserve 
normalization of the density in constructing the molecule from "atomic regions" 
[22]. 

Figs. 4 and 5 seem to reflect a general pattern according to which the charge 
definitions based on the partitioning of the function space exaggerate the electronic 
charge redistribution due to interactions between atoms in a molecule. This finding 
is in accord with charge distribution calculations for a selection of linear molecules 
1-14] and a study of charge transfer in molecular complexes [18]. The only excep- 
tion of the above given conclusion represents the definition C applied to the 
virtual state within a certain interval of Z,,  and the definition PC at smaller 
polarity conditions. 
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Fig. 4. Charge differences corresponding to various 
definitions relative to the value obtained through 
approach D as a function of Z a. R =  1 a.u. Cases 
corresponding to ground and virtual states are 
distinguished by full and dashed curves 
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Fig. 5. Charge differences corresponding to various 
definitions relative to the value obtained through 
approach D as a function of Z~. R=2.5 a.u. Cases 
corresponding to ground and virtual states are 
distinguished by full and dashed curves 
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It appears from Figs. 1, 2, 4 and 5 that the definition PC is, on the whole, the 
closest to the definition taken as standard. Unfortunately, the extension of this 
kind of approach to the case of a complex molecule is not straightforward, because 
the arbitrariness in dividing the "shared" electron density becomes even more 
distressful. Particularly it should be mentioned that the pairwise equipartitioning 
of "shared" electron densities, as tentatively suggested by Heinzmann and 
Ahlrichs [13], does not necessarily lead to restoring the "closure" relation con- 
cerning the sum of all electron populations. In regard to this difficulty it is advisable 
to keep this kind of wave function analysis in terms of well defined occupation 
numbers [9, 11-13, 23, 24] rather than to create concepts forced artificially into 
the problem. On grounds of our results one can tentatively conclude that the 
method yields reliable results concerning predictions of polarity conditions in 
molecules, if applied in a comparative manner. 

The next "closest" results, as it is seen from Figs. 1, 2, 4 and 5, are those calculated 
using an orthogonalized basis set. It is gratifying that similar results concerning 
the favourable properties of charges calculated by means of orthogonalized AO's 
were found by other authors [25, 26]. However, the fact that the atomic basis 
functions become polycentric reduces the value of this approach. The Mulliken 
type approaches form the last category of results. Surprisingly enough we note in 
Figs. 4 and 5 that definitions L and C are inferior to the Mulliken definition with 
respect to the proximity to the standard. The exception already mentioned con- 
cerns the application of definition C to the virtual state wave function. In this case 
the corresponding plot follows the pattern of the curve related to the ground state. 
While the definition L seems to give for the ground state a better estimate of the 
charge than the definition C, the former fails completely if applied to the virtual 
state. Namely, when Z~ becomes greater than a critical value (about 1.22 and 
1.60 a.u. for R equal to 1.0 and 2.5 a.u., respectively), the calculated charge on 
center a becomes negative (whereas the charge on center b exceeds the number of 
electrons considered). We see that dipole moment conservation in our case was 
followed by a disasterous consequence. These results justify us in claiming that, if 
preservation of multipole characteristics is required, only extension of the basis 
set for the wave function expansion can improve the charges calculated within a 
scheme of type A [27]. 

Finally, in Fig. 6 dependencies of the electronic charge on polarity (specifically on 
parameter p of Eq. (1)) and overlap conditions (for the values of S equal to 1.0, 
0.7, 0.4 and 0.0) in the model system are visualized. Varying p in the interval 
( -  1, 1) and considering positive values of S, we cover all possible situations. With 
the Mulliken definition (Fig. 6a) we notice that the breakdown of the approach 
takes place in the interval ofp ( - S ,  0). Namely, Qa becomes greater than 1 (and, 
consequently, Qb negative). The effect of basis orthogonalization on the charge 
values is seen from Fig. 6b. Because there is no overlap dependency in the scheme 
corresponding to definition C (cf. Eq. (5)), the electronic charge is given in Fig. 6a 
(or Fig. 6b) by the curves pertinent to S = 0. Fig. 6c shows the behavior of charges 
on both centers obtained by the projection-density approach. This figure presents 
in an illuminating way the fact that the "shared" electron density can assume 
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Fig. 6. Electronic charge on center a (full curves) and center b (dashed curves, in case of definition P)  
as a function of the polarity parameter p for four values of overlap (indicated inside the figure) (a) 
definition M, (b) definition OB, (c) definition P, (d) definition PC 

either positive or negative values: for p>l/S[-l+~--SZ], the sum of  
Q, and Qb exceeds the sum of electrons considered (i.e. 1.0), while for p <  
1/S[-1 + ~ 1 ~ - S  z] the opposite is true. For our plots corresponding to S = 0 . 3  
and S =  0.7, the critical values of p are - 0 . 1 5 4  and -0 .408 ,  respectively. In fact, 
the physical background of  the division of the plots into two regions according to 
the value o f p  is in differentiating between ground and virtual states. The "cor- 
rected" projection density approach is the only one (cf. Fig. 6d) which in the case 
of non-zero overlap reaches a maximum of  Q, at a lower value than 1. This means 
that only at S = 0 it is possible to attribute the total electronic charge to one center. 

In concluding, we wish to express our hope that the preceding results and discussion 
brought a portion of insight into the concept of the charge on an atom in the 
molecule, and some understanding of  various factors which contribute to the 
realistic features of the concept. Of course, many of our observations have a 
restricted meaning because of simplified conditions used in this work. Nevertheless 
one point seems to be clear. Namely, that no definition of  atomic charge is without 
some weakness and that a mechanical interpretation of results of any method 
should be avoided. 
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